精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{mx+1}{{e}^{x}}$的极大值为1
(Ⅰ)求函数y=f(x)(x≥-1)的值域;
(Ⅱ)若关于的方程a•ex-x-1=0有两个不相等的实数根x1,x2,求证;x1+x2>0.

分析 (Ⅰ)求出函数的导数,根据f($\frac{m-1}{m}$)=1,求出m的值,从而求出f(x)的单调区间,从而求出函数的值域即可;
(Ⅱ)求出x1,x2异号,不妨设x1>0,x2<0,只需证明f(x2)<f(-x2),令g(x)=f(x)-f(-x)=$\frac{x+1}{{e}^{x}}$-ex(1-x),根据函数的单调性得到g(x)<g(0),即f(x2)<f(-x2),从而证出结论.

解答 解:(Ⅰ)f′(x)=$\frac{-mx+m-1}{{e}^{x}}$,
f(x)有极大值,故m>0,
由f′(x)=0,解得:x=$\frac{m-1}{m}$,
∴f($\frac{m-1}{m}$)=1,即$\frac{m}{{e}^{\frac{m-1}{m}}}$=1,解得:m=1,
∴f′(x)=-$\frac{x}{{e}^{x}}$,
令f′(x)>0,解得:x<0,令f′(x)<0,解得:x>0,
∴f(x)在(-∞,0)递增,在(0,+∞)递减,
∴f(x)max=f(0)=1,
∴f(x)的值域是(-∞,1];
(Ⅱ)∵方程a•ex-x-1=0有两个不相等的实数根x1,x2
∴a=$\frac{{x}_{1}+1}{{e}^{{x}_{1}}}$=$\frac{{x}_{2}+1}{{e}^{{x}_{2}}}$,即f(x1)=f(x2),
由(Ⅰ)得:f(x)在(-∞,0)递增,在(0,+∞)递减,
∴x1,x2异号,
不妨设x1>0,x2<0,下面证明:f(x2)<f(-x2),
令g(x)=f(x)-f(-x)=$\frac{x+1}{{e}^{x}}$-ex(1-x),显然g(0)=0,
∴g′(x)=x•$\frac{{e}^{2x}-1}{{e}^{x}}$,
令g′(x)>0,解得:x<0,
∴g(x)在(-∞,0)递增,
∴g(x)<g(0)=0,(x<0),
∴f(x)<f(-x),(x<0),
∴f(x2)<f(-x2),
∴f(x1)=f(x2)<f(-x2),
∵x1>0,-x2>0,
∴x1>-x2
∴x1+x2>0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,设Tn=a1a2…an,n∈N*,则(  )
A.若T2n+1>0,则a1>0B.若T2n+1<0,则a1<0
C.若T3n+1<0,则a1>0D.若T4n+1<0,则a1<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{a{e^x}}}{x^2}$(a≠0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=f(x)-$\frac{2}{x}$-lnx,若g(x)在区间(0,2)上有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.计算:$\int_{-2}^1$|x|dx=(  )
A.-1B.1C.-$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.由①正方形的对角线互相垂直;②菱形的对角线互相垂直;③正方形是菱形,写出一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为(  )
A.②①③B.③①②C.①②③D.②③①

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ为参数),曲线C2:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t-\sqrt{2}}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数).
(1)指出C1,C2各是什么曲线;
(2)求曲线C1与C2公共点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过正四面体ABCD的顶点A作一个形状为等腰三角形的截面,且使截面与底面BCD所成的角为75°,这样的截面共可作出18个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三棱锥P-ABC,PA、PB、PC两两垂直,PA=PB=PC=$\sqrt{2}$,此三棱锥的内切球的半径为$\frac{3\sqrt{2}-\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了响应政府“节能、降耗、减排、增效”的号召,某工厂决定转产节能灯,现有A、B两种型号节能灯的生产线.在这两种生产线的大量产品中各随机抽取100个进行质量评估,经检测,综合得分情况如图的频率分布直方图:

产品级别划分以及利润率如表,其中$\frac{1}{10}$<a<$\frac{1}{6}$;将频率视为概率.
综合得分k的范围产品级别产品利润率
k≥85一级a
75≤k<85二级5a2
70≤k<75三级a2
(Ⅰ)在A型节能灯中按产品级别用分层抽样的方法抽取10个,在这10个节能灯中随机抽取3个,至少有2个一级品的概率是多少?
(Ⅱ)从长期来看,投资哪种型号的节能灯的平均利润率较大?

查看答案和解析>>

同步练习册答案