精英家教网 > 高中数学 > 题目详情

【题目】如图,已知是椭圆的一个顶点,的短轴是圆的直径,直线过点P且互相垂直,交椭圆于另一点D交圆AB两点

求椭圆的标准方程;

面积的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】

由题意可得,,然后求解椭圆的标准方程.

因为直线过点P且互相垂直,可设,求出圆心O到直线的距离以及AB,直线与圆O有两个交点,推出,联立,转化求解PD的距离,求出三角形的面积,通过二次函数的性质求解面积的最大值.

由题意是椭圆的一个顶点,的短轴是圆的直径,

可得,

则椭圆的标准方程为

因为直线过点P且互相垂直,可设

圆心O到直线的距离

直线与圆O有两个交点,,所以

又由,可得

所以

,则

,即时,有最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a为实数

求函数的单调区间;

若存在实数a,使得对任意恒成立,求实数m的取值范围.提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别在棱上,且(其中),若平面与线段的交点为,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程,并说明它为何种曲线;

(Ⅱ)设点的坐标为,直线交曲线两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 表示双曲线命题 表示椭圆

(1)若命题与命题 都为真命题 的什么条件

(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)

(2)若 为假命题 为真命题求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥DABC中,二面角ABCD的大小为90°,且∠BDC90°,∠ABC30°BC3

1)求证:AC⊥平面BCD

2)二面角BACD45°,且E为线段BC的中点,求直线AE与平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图像向左平移个单位后得到函数的图像,且函数满足,则下列命题中正确的是()

A. 函数图像的两条相邻对称轴之间的距离为

B. 函数图像关于点对称

C. 函数图像关于直线对称

D. 函数在区间内为单调递减函数

查看答案和解析>>

同步练习册答案