精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱锥DABC中,二面角ABCD的大小为90°,且∠BDC90°,∠ABC30°BC3

1)求证:AC⊥平面BCD

2)二面角BACD45°,且E为线段BC的中点,求直线AE与平面ACD所成的角的正弦值.

【答案】(1)见解析;(2)

【解析】

1))ABC中,根据条件利用余弦定理求出AC,根据勾股定理证明垂直即可(2)以C为原点,CB所在直线为x轴,CA所在直线为y轴,过点C作垂直于平面ABC的直线为z轴建立空间直角坐标系,求出平面ACD的法向量,利用直线与平面所成角公式计算即可.

1ABC中,由

解得,从而AC2+BC2AB2,∴ACBC;又二面角A-BC-D的大小为90°,即平面BCD⊥平面ABC

而平面BCD平面ABCBCAC平面ABC,故AC⊥平面BCD

2)以C为原点,CB所在直线为x轴,CA所在直线为y轴,过点C作垂直于平面ABC的直线为z轴,建立如图所示的空间直角坐标系,

故平面ABC的法向量(001)

设平面ACD的法向量(1mn),由,易知m0

从而(10n)

解得n±1,结合实际图形,可知n1时,二面角为135°,应舍去,

所以(10-1)

易知B(300),故,则

设直线AE与平面ACD所成的角为θ

,即直线AE与平面ABC所成的角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1an+1=,(nN*

1)求数列{an}的通项公式an

2)若数列{bn}满足bn=3n﹣1an,数列{bn}的前n项和为Tn,若不等式(﹣1nλTn对一切nN*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是椭圆的一个顶点,的短轴是圆的直径,直线过点P且互相垂直,交椭圆于另一点D交圆AB两点

求椭圆的标准方程;

面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.

(1)求椭圆的方程:

(2)若是椭圆上的动点,求的取值范围;

(3)直线与椭圆交于异于椭圆顶点的,两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线轴交于点.若直线,的斜率分别为,试判断,是否为定值,若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

求实数a的值;

若关于x的方程上恰有两个不相等的实数根,求实数b的取值范围;

证明:参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,矩形平面,且,.

1)求证:

2)求证:∥平面

3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三角形中,分别是边上的点,满足(如图1).将沿折起到的位置,使二面角成直二面角,连结(如图2)

)求证:平面

求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为,且对任意的实数都有是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案