精英家教网 > 高中数学 > 题目详情

【题目】如图,已知梯形中,,矩形平面,且,.

1)求证:

2)求证:∥平面

3)求二面角的正切值.

【答案】(1)证明见解析;(2)证明见解析;(3)

【解析】

(1)根据面面垂直的性质定理证得平面,从而可得,再根据以及线面垂直的判定定理可得.平面,从而可得.

(3) 过点B垂足为,,垂足为,连接,就是所求二面角的平面角,在三角形中,可求得答案.

解:(1矩形平面,且平面平面=CD ,平面.

平面.

平面

,

,

.平面.

平面

2)如图所示:

中点M,连接,由已知条件易得为平行四边形,于是,由于,为平行四边形.

.ABE,

所以 平面., 所以,

,所以平面平面. 平面

∥平面.

3)如图所示:

过点B垂足为,,垂足为,连接.由矩形平面,得平面,,

所以就是所求二面角的平面角.

,根据面积关系可得,,,解得.

中, .

故二面角的正切值为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5,该纸片上的等边三角形ABC的中心为O,点DEF为圆O上的点,分别是以BCCAAB为底边的等腰三角形.沿虚线剪开后,分别以BCCAAB为折痕折起,使得DEF重合于P,得到三棱锥

1)当时,求三棱锥的体积;

2)当的边长变化时,三棱锥的侧面和底面所成二面角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 表示双曲线命题 表示椭圆

(1)若命题与命题 都为真命题 的什么条件

(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)

(2)若 为假命题 为真命题求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点分别与两个定点的连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设过点的直线与轨迹交于两点,判断直线与以线段为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥DABC中,二面角ABCD的大小为90°,且∠BDC90°,∠ABC30°BC3

1)求证:AC⊥平面BCD

2)二面角BACD45°,且E为线段BC的中点,求直线AE与平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知pxRx2+2xaqx24x+3≤0r:(xm[x﹣(m+1]≤0

1)若命题p的否定是假命题,求实数a的取值范围;

2)若qr的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处的切线方程为,求的值;

(2)若为区间上的任意实数,且对任意,总有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点

求椭圆的方程;

过点且不与轴重合的直线与椭圆交于不同的两点,过右焦点的直线分别交椭圆于点,设 ,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(  )

A.,则的长度相等,方向相同或相反

B.若向量是向量的相反向量,则

C.空间向量的减法满足结合律

D.在四边形中,一定有

查看答案和解析>>

同步练习册答案