精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且经过点

求椭圆的方程;

过点且不与轴重合的直线与椭圆交于不同的两点,过右焦点的直线分别交椭圆于点,设 ,的取值范围.

【答案】(1)(2)

【解析】

由题意可得,解得,即可求出椭圆方程,

设直线l的斜率为k,,则,分两种情况,求出直线AG的方程,联立直线与椭圆的方程,由根与系数的关系的分析可得范围,即可得答案.

解:由题意可得,解得

则椭圆方程为

设直线l的斜率为k,

由题意可知,直线l的斜率存在且不为0,

,可得

当AM与x轴不垂直时,直线AM的方程为,即

代入曲线C的方程又,整理可得

当AM与x轴垂直时,A点横坐标为,显然也成立,

,同理可得

设直线l的方程为,联立

消去y整理得

,解得

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为且四个顶点构成面积为的菱形.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率不为0的直线与椭圆交于两点,记中点为,坐标原点为,直线交椭圆于两点,当四边形的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,矩形平面,且,.

1)求证:

2)求证:∥平面

3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三角形中,分别是边上的点,满足(如图1).将沿折起到的位置,使二面角成直二面角,连结(如图2)

)求证:平面

求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(Ⅰ)若函数存在两个零点,求的取值范围;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中国绿化基金会的支持下,库布齐沙漠得到有效治理.2017年底沙漠的绿化率已达,从2018年开始,每年将出现这样的情况,上一年底沙漠面积的被栽上树改造为绿洲,而同时,上一年底绿洲面积的又被侵蚀,变为沙漠.

1)设库布齐沙漠面积为1,由绿洲面积和沙漠面积构成.2017年底绿洲面积为,经过1年绿洲面积为,经过n年绿洲面积为,试用表示

2)问至少需要经过多少年的努力才能使库布齐沙漠的绿洲面积超过(年数取整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),将曲线上所有点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的极坐标方程及直线的直角坐标方程;

(2)设点为曲线上的任意一点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面内两个不共线的非零向量,,且三点共线.

1求实数的值;

2)已知,,若四点按逆时针顺序构成平行四边形,求点的坐标.

查看答案和解析>>

同步练习册答案