精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极值.

求实数a的值;

若关于x的方程上恰有两个不相等的实数根,求实数b的取值范围;

证明:参考数据:

【答案】(1)0;(2);(3)见解析

【解析】

(1)求导,由f′(1)=0构造方程求出a;(2)由(1)将方程f(x)+2xx2b化简,令g(x)=x2-3x+lnxb(x>0),求导,研究当x变化时,g′(x),g(x)的变化情况,确定函数的最值,从而建立不等式组,即可求得结论;(3)设φ(x)=lnx(x2-1),求导,根据函数的单调性得当x≥2时,>2,从而累加可得结论.

(1)f′(x)=1-,∵x=1是f(x)的一个极值点,f′(1)=0,即1-=0,∴a=0.

经检验满足题意.

(2)由(1)得f(x)=x-lnx,∴f(x)+2x=x2+b即x-lnx+2x=x2+b,∴x2-3x+lnx+b=0,

设g(x)=x2-3x+lnx+b(x>0),

则g′(x)=2x-3+

.

由g′(x)>0得0<x<或x>1,由g′(x)<0得<x<1,

当x,(1,+∞)时,函数g(x)单调递增,x时,函数g(x)单调递减,

当x=1时,g(x)极小值=g(1)=b-2,g=b--ln2,g(2)=b-2+ln2,

方程f(x)+2x=x2+b在上恰有两个不相等的实数根,

解得+ln2≤b<2.

(3)证明:∵k-f(k)=lnk,∴>.

+…+> (n∈N,n≥2)

设φ(x)=lnx- (x2-1),则φ′(x)==-

当x≥2时,φ′(x)<0,函数y=φ(x)在[2,+∞)上是减函数,

∴φ(x)≤φ(2)=ln2-<0,∴lnx< (x2-1).

当x≥2时, >

=2

+…+>2

=2.

∴原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(选做题)

A.[选修4-2:矩阵与变换](本小题满分10分)

已知m,n∈R,向量是矩阵的属于特征值3的一个特征向量,求矩阵M及另一个特征值.

B.[选修4-4:坐标系与参数方程](本小题满分10分)

在平面直角坐标系xOy中,已知直线的参数方程为( t为参数),椭圆C的参数方程为.设直线与椭圆C交于A,B两点,求线段AB的长.

C.[选修4-5:不等式选讲](本小题满分10分)

已知x,y,z均是正实数,且求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程,并说明它为何种曲线;

(Ⅱ)设点的坐标为,直线交曲线两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数,直线与曲线分别交于两点.

(1)若点的极坐标为,求的值;

(2)求曲线的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地日到日均值(单位:)的统计数据,则下列叙述不正确的是(

A.日到日,日均值逐渐降低

B.天的日均值的中位数是

C.天中日均值的平均数是

D.从这天的日均监测数据中随机抽出一天的数据,空气质量为一级的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥DABC中,二面角ABCD的大小为90°,且∠BDC90°,∠ABC30°BC3

1)求证:AC⊥平面BCD

2)二面角BACD45°,且E为线段BC的中点,求直线AE与平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲所示, 是梯形的高, ,现将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.

(1)证明: 不可能垂直;

(2)当时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆M与圆F1x2+y2+6x+50外切,同时与圆F2x2+y26x910内切.

1)求动圆圆心M的轨迹方程E,并说明它是什么曲线;

2)若直线yx+m与(1)中的轨迹E有两个不同的交点,求m的取值范围.

查看答案和解析>>

同步练习册答案