精英家教网 > 高中数学 > 题目详情
4.已知直线m⊥平面a,直线n?平面β,则下列四个命题①若α∥β,则m⊥n②若α⊥β,则m∥n③若m∥n,则α⊥β④若m⊥n,则α∥β.其中真命题的序号是(  )
A.①②B.①③C.②④D.③④

分析 由已知中直线m⊥平面α,直线n?平面β,我们根据面面平行的性质及线面垂直的性质和几何特征,可以判断①的真假,根据面面垂直的几何特征可以判断②的真假,根据面面平行的判定定理,可以判断③的对错,根据面面垂直的判定定理,可以判断④的正误,进而得到答案.

解答 解:∵直线m⊥平面α,直线n?平面β,当α∥β时,直线m⊥平面β,则m⊥n,则①正确;
∵直线m⊥平面α,直线n?平面β,当α⊥β时,直线m∥平面β或直线m?平面β,则m与n可能平行也可能相交也可能异面,故②错误;
∵直线m⊥平面α,直线n?平面β,当m∥n时,则直线直线n⊥平面α,则α⊥β,故④正确;
∵直线m⊥平面α,直线n?平面β,当m⊥n时,则直线n∥平面α或直线m?平面α,则α与β可能平行也可能相交,故④错误.
故选:B.

点评 本题考查的知识点是空间直线与平面垂直的性质,熟练掌握空间直线与平面之间各种关系的几何特征是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求事件A、B、C满足条件P(A)>0,B和C互斥试证明:P(BUC|A)=P(B|A)+P(C|A)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M是AC的中点,∠CAD=30°,AB=2,点N在线段PB上,且$\frac{PN}{NB}=\frac{1}{3}$.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=sin(ωx+φ),其中ω>0,φ∈R,若存在常数T(T<0),使得对任意x∈R,有f(x+T)=Tf(x),则ω可取的最小值是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,过点P(1,0)作斜率为k的直线l,且直线l与椭圆C交于两个不同的点M、N.
(Ⅰ)设点A(0,2),k=1.求△AMN的面积;
(Ⅱ)设点B(t,0),记直线BM、BN的斜率分别为k1、k2,问是否存在实数t,使得对于任意非零实数k.(k1+k2)•k为定值?若存在,求出实数t的值及该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某品牌电视机代理销售商根据近年销售和利润情况得出某种型号电视机的利润情况有如下规律:每台电视机的最终销售利润L(单位:元)与其无故障使用时间T(单位:年)满足:L=$\left\{\begin{array}{l}0,T≤1\\ 100,1<T<3\\ 200,T≥3\end{array}$.设每台该种电视机的无故障使用时间T≤1、1<t<3、T≥3三种情况发生的概率分别为P1、P2、P3,已知P1+P2=$\frac{3}{5}$,P2=P3
(Ⅰ)求P1、P2、P3的值;
(Ⅱ)记X表示销售两台这种电视机的销售利润总和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在空间几何体ABCDE中,平面ACD⊥平面ABC,△ABC和△ACD都是边长为2的等边三角形,BE=2,点E在平面ABC内的射影落在∠ABC的平分线上,若DE∥平面ABC.
(Ⅰ)求DE边的长度;
(Ⅱ)求棱锥A-CDE的体积与棱锥A-BCE的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z1=l+2i,z2=l-ai,若z1•z2为实数,则实数a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(x,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案