精英家教网 > 高中数学 > 题目详情
(本小题满分13分)    
在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.
(I)证明: 点是椭圆与直线的唯一交点;        
(II)证明:构成等比数列.
如下
证明(I)(方法一)由代入椭圆,
.
代入上式,得从而
因此,方程组有唯一解,即直线与椭圆有唯一交点P.         
(方法二)显然P是椭圆与的交点,若Q是椭圆与的交点,代入的方程,得
PQ重合。
(方法三)在第一象限内,由可得
椭圆在点P处的切线斜率
切线方程为
因此,就是椭圆在点P处的切线。    
根据椭圆切线的性质,P是椭圆与直线的唯一交点。
(II)的斜率为的斜率为
由此得构成等比数列。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点,点,在第一象限的动点满足,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过定点A(1,0),且焦点在x轴上,椭圆与曲线|y|=x的交点为B、C。现有以A为焦点,过点B、C且开口向左的抛物线,抛物线的顶点坐标为M(m,0)。当椭圆的离心率e满足时,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆=1(ab>0)与直线l: x+y=1在第一象限内有两个不同的交点,求ab所满足的条件,并画出点P(a,b)的存在区域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,设是椭圆的左焦点,直线为对应的准线,直线 与轴交于点,为椭圆的长轴,已知,且
(1)求椭圆的标准方程;(2)求证:对于任意的割线,恒有
(3)求三角形△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆 的离心率为,点,0),(0,),原点到直线的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(,0),点在椭圆上(与均不重合),点在直线上,若直线的方程为,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)原点O及直线为曲线C的焦点和相应的准线;
(2)被直线垂直平分的直线截曲线C所得的弦长恰好为
若存在,求出曲线C的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线方程为,P为双曲线上任意一点,F为双曲线的一个焦点,讨论以|PF|为直径的圆与圆x2+y2=a2的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题




A.B.C.D.

查看答案和解析>>

同步练习册答案