分析 采用两边平方,即(sinα+cosα)2=$\frac{1}{4}$,根据同角三角函数关系式和万能公式化简,得$\frac{tanα}{ta{n}^{2}α+1}$=$-\frac{3}{8}$,即tanα+$\frac{1}{tanα}$=$-\frac{8}{3}$则tan2α+cot2α=$(tanα+\frac{1}{tanα})^{2}-2$即得答案.
解答 解:由sinα+cosα=-$\frac{1}{2}$,
可得sin2α+cos2α+2sinαcosα=$\frac{1}{4}$.即sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$-\frac{3}{8}$.
同时除以cos2α,
可得:$\frac{tanα}{ta{n}^{2}α+1}$=$-\frac{3}{8}$,
得:tanα+$\frac{1}{tanα}$=$-\frac{8}{3}$
则tan2α+cot2α=$(tanα+\frac{1}{tanα})^{2}-2$=$\frac{64}{9}-2=\frac{46}{9}$.
故答案为:$\frac{46}{9}$.
点评 本题考查了同角三角函数关系式和万能公式化简能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 16 | C. | 15 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5人 | B. | 6人 | C. | 7人 | D. | 8人 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com