精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1中,点E,F分别是棱AB,AA1的中点,求证:三条直线DA,CE,D1F交于一点.

【答案】分析:欲证:三条直线DA,CE,D1F交于一点,先将其中一条直线看成是两个平面的交线,再证明另外两条直线的交点是这两个平面的公共点,由平面的基本性质,从而证得三条直线交于一点.
解答:证明:连接EF、CD1、BA1,在正方体ABCD-A1B1C1D1中,
点E,F分别是棱AB,AA1的中点,∴EF∥BA1
又A1D1∥B1C1,A1D1=B1C1∴四边形A1BCD1为平行四边形,∴BA1∥CD1BA1=CD1
∴EF∥CD1∴四边形是梯形,
∴D1F与CE的延长线交于一个点,设为O点,
则有O∈D1F,D1F?平面AD1
∴O∈平面AD1,同理O∈平面AC,且平面AD1∩平面AC=AD
∴O∈AD,∴三条直线DA,CE,D1F交于一点.
点评:本小题主要考查平面的基本性质及推论、确定平面的条件、共点的证明方法、棱柱的结构特征等基础知识,考查空间想象力、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案