精英家教网 > 高中数学 > 题目详情
15.在极坐标系中,点$(4,\frac{π}{3})$到直线$ρsin(θ-\frac{π}{3})=2$的距离是(  )
A.2B.3C.$\sqrt{2}$D.1

分析 分别化为直角坐标方程,利用点到直线的距离公式即可得出.

解答 解:点P$(4,\frac{π}{3})$,化为直角坐标P$(4cos\frac{π}{3},4sin\frac{π}{3})$,即P(2,2$\sqrt{3}$).
直线$ρsin(θ-\frac{π}{3})=2$,展开:$ρ•\frac{1}{2}sinθ$-$ρ•\frac{\sqrt{3}}{2}cosθ$=2,化为:$\sqrt{3}$x-y+4=0.
∴点P到直线的距离=$\frac{|2\sqrt{3}-2\sqrt{3}+4|}{\sqrt{(\sqrt{3})^{2}+(-1)^{2}}}$=2.
故选:A.

点评 本题考查了极坐标化为直角坐标、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m=(\sqrt{3}sin2x+2,cosx),\overrightarrow n=(1,2cosx)$
(1)若$\overrightarrow m∥\overrightarrow n$,求x的值;
(2)设函数$f(x)=\overrightarrow m•\overrightarrow n$,求f(x)的最小正周期及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下面的要求,求1+3+5+…+99的值.
(1)请完成执行该问题的程序框图;
(2)请用for语句写出该算法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
总计
爱好402060
不爱好203050
总计6050110
由χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,χ2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$≈7.8.
在犯错误的概率不超过0.1%的前提下,判断爱好该项运动是否与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线$ρcosθ=\frac{1}{2}$被圆ρ=1所截得的弦长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x-m|.
(1)当m=3时,解不等式f(x)≥5-|x-1|;
(2)若f(x)≤1的解集为{x|0≤x≤2},$\frac{1}{3a}+\frac{1}{2b}$=m(a>0,b>0),求证:3a+2b≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.4π+8B.$\frac{4π}{3}$+24C.4π+24D.$\frac{4π}{3}$+8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|$\sqrt{3}$sin2x|,则此函数的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程y=-$\sqrt{25-{x}^{2}}$表示的曲线(  )
A.一条射线B.一个圆C.两条射线D.半个圆

查看答案和解析>>

同步练习册答案