精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=|$\sqrt{3}$sin2x|,则此函数的最小正周期为$\frac{π}{2}$.

分析 利用函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}$•$\frac{2π}{ω}$,得出结论.

解答 解:∵y=$\sqrt{3}$sin2x的最小正周期为$\frac{2π}{2}$=π,∴函数f(x)=|$\sqrt{3}$sin2x|的最小正周期为$\frac{π}{2}$,
故答案为:$\frac{π}{2}$.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}$•$\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设ab<0,则下列四个式子:(1)|a-b|=|a|+|b|,(2)|a-b|<|a+b|,(3)|a+b|<|b|,(4)|a-b|>|a|-|b|中,正确的是(  )
A.(1)、(2)B.(1)、(4)C.(3)、(4)D.(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在极坐标系中,点$(4,\frac{π}{3})$到直线$ρsin(θ-\frac{π}{3})=2$的距离是(  )
A.2B.3C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的体积为(  )
A.$\frac{\sqrt{3}}{6}$πB.$\frac{3}{2}$πC.$\frac{1}{6}$πD.$\frac{\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.P在圆A:x2+(y+3)2=4上,点Q在圆B:(x-6)2+y2=16上,则|PQ|的最小值为3$\sqrt{5}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个质点在如图所示的平面直角坐标系中移动,每秒移动一步,第一个四步:第一步,从原点出发向右移动一个单位长度,第二步,向上移动一个单位长度,第三步,向左移动一个单位长度,第四步,向上移动一个单位长度,第二个四步:与前四步方向一致,但移动长度都增加一个单位长度.第三个四步:与前四步方向一致,但移动长度都增加一个单位长度,照此规律,该质点第101秒所在的坐标为(  )
A.(25,625)B.(25,650)C.(26,625)D.(26,650)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ为参数),直线l经过定点P(3,5),倾斜角为$\frac{π}{6}$.
(Ⅰ) 写出直线l的参数方程和曲线C的标准方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法:①分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大,②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3,③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,$\overline x=1$,$\overline y=3$,则a=1,④若变量x和y满足关系y=-0.1x+1,且变量y与z正相关,则x与z也正相关,正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=(  )
A.15B.11C.8D.7

查看答案和解析>>

同步练习册答案