【题目】现如今,“网购”一词不再新鲜,越来越多的人已经接受并喜欢了这种购物方式,但随之也出现了商品质量不能保证与信誉不好等问题,因此,相关管理部门制定了针对商品质量与服务的评价体系,现从评价系统中选出成功交易200例,并对其评价进行统计:对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)依据题中的数据完成下表,并通过计算说明,能否有99.9%的把握认为“商品好评与服务好评”有关;
(2)若将频率视为概率,某人在该购物平台上进行了5次购物,设对商品和服务全好评的次数为随机变量,求的分布列(概率用算式表示)、数学期望和方差.
【答案】(Ⅰ)有%的把握(Ⅱ),
【解析】试题分析:(1)利用样本乘以商品好评率得到好评人数,用样本乘以服务好评率得到对服务满意人数,由此填写联表,计算出,故有的把握认为“商品好评和服务好评”有关.(2)对商品和服务都好评的概率为, 次购物相当于的独立重复试验,故利用二项分布来计算分布列、期望和方程.
试题解析:
(1) 根据题中条件可得关于商品和服务的列联表:
对服务好评 | 对服务不满意 | 合计 | ||||
对商品好评 | ||||||
对商品不满意 | ||||||
合计 |
因此,有%的把握认为“商品好评与服务好评”有关.
(2)由题可得,每次购物时,对商品和服务都好评的概率为
的所有可能的取值为,则~,
所以, , ,
, ,
分布列为:
由于~,
所以,
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;
②若平面α内的任一直线都平行于平面β,则α∥β;
③若平面α垂直于平面β,直线l在平面α内,则l⊥β;
④若平面α平行于平面β,直线l在平面α内,则l∥β.
其中正确命题的个数是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是递增的等差数列,它的前三项的和为﹣3,前三项的积为8.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程,其左焦点、上顶点和左顶点分别为, , ,坐标原点为,且线段, , 的长度成等差数列.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过点的一条直线交椭圆于点, ,交轴于点,使得线段被点, 三等分,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体的棱长为, 为的中点, 为线段的动点,过的平面截该正方体所得的截面记为,则下列命题正确的序号是_________.
①当时, 的面积为;
②当时, 为六边形;
③当时, 与的交点满足;
④当时, 为等腰梯形;
⑤当时, 为四边形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com