精英家教网 > 高中数学 > 题目详情
12.已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁UN)={x|x=1或x≥3},那么a的取值为(  )
A.a=$\frac{1}{2}$B.a≤$\frac{1}{2}$C.a=-$\frac{1}{2}$D.a≥$\frac{1}{2}$

分析 此题考查的是集合的交并补运算问题,在解答的时,应先将集合的元素具体化,然后再逐一利用交并补运算即可获得参数的结果.

解答 解:由题意可知:∵log2(x-1)<1,
∴x-1>0且x-1<2,即1<x<3,
∴N={x|1<x<3},
∴CuN={x|x≤1或x≥3}
又∵M={x|x+2a≥0}={x|x≥-2a},
而M∩(∁N)={x|x=1,或x≥3},
∴-2a=1,
∴a=-$\frac{1}{2}$
故选C.

点评 此题考查的是集合的交并补运算问题,在解答的过程当中充分体现了解不等式的知识、交并补运算的知识以及问题转化的思想.值得同学们体会反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(5,k),$\overrightarrow{b}$=(2,-2),则使|$\overrightarrow{a}-\overrightarrow{b}$|≤5成立的充分不必要条件是(  )
A.-6≤k≤2B.-6≤k≤-2C.-2≤k≤6D.2≤k≤6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z满足(z-3)(1-3i)=10(i为虚数单位),则z的模为(  )
A.$\sqrt{5}$B.5C.$2\sqrt{6}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在长为16cm的线段MN上任取一点P,以MP,NP为邻边作一矩形,则该矩形的面积大于60cm2的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=sin2x+2$\sqrt{3}sinxcosx+sin({x+\frac{π}{4}})sin({x-\frac{π}{4}})$,若$x={x_0}({0≤{x_0}≤\frac{π}{2}})$为函数f(x)的一个零点,则cos2x0=$\frac{3\sqrt{5}+1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=sin({\frac{π}{6}-x})$,$x∈[{0,\frac{3π}{2}}]$的单调递减区间是$[{0,\frac{2}{3}π}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$,则z=x-2y的最小值为(  )
A.-6B.-2C.-1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-x-6≥0},B={x|-3≤x≤3},则A∩B等于(  )
A.[-3,-2]B.[2,3]C.[-3,-2]∪{3}D.[2,3]∪{-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)当m=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)存在最大值M,且M>0,求m的取值范围.

查看答案和解析>>

同步练习册答案