精英家教网 > 高中数学 > 题目详情
4.若x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$,则z=x-2y的最小值为(  )
A.-6B.-2C.-1D.3

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.

解答 解:变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$的可行域如图:
由z=x-2y得y=$\frac{1}{2}$x-$\frac{1}{2}$z,
平移直线y=$\frac{1}{2}$x-$\frac{1}{2}$z,
由图象可知当直线y=$\frac{1}{2}$x-$\frac{1}{2}$z,过点A时,
直线y=$\frac{1}{2}$x-$\frac{1}{2}$z的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y=0}\\{2x+y-6=0}\end{array}\right.$得A(2,2),
代入目标函数z=x-2y,
得z=2-4=-2.
∴目标函数z=x-2y的最小值是-2.
故选:B.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈Z|$\frac{x+1}{x-3}$≤0},B={y|y=x2+1,x∈A},则集合B的子集个数为(  )
A.5B.8C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥中P-ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=$\sqrt{2}$,BC=2$\sqrt{2}$,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角M-AC-D的大小为45°,如果存在,求BM与平面MAC所成角,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁UN)={x|x=1或x≥3},那么a的取值为(  )
A.a=$\frac{1}{2}$B.a≤$\frac{1}{2}$C.a=-$\frac{1}{2}$D.a≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知各项均为正数的数列{an}满足(2an+1-an)(an+1an-1)=0(n∈N*),且a1=a10,则首项a1所有可能取值中最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x 的方程sinx+cosx-m=0在区间[0,$\frac{π}{2}$]上有解,则实数m的取值范围是[1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若圆C过点(0,-1),(0,5),且圆心到直线x-y-2=0的距离为2$\sqrt{2}$,则圆C的标准方程为x2+(y-2)2=9或(x-8)2+(y-2)2=73.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:x2+$\frac{{y}^{2}}{4}$=1,直线l:y=2x+m(m∈R),点M(1,0).
(1)若直线l与椭圆C恒有公共点,求m的取值范围;
(2)若动直线l与椭圆C相交于A,B两点,线段AB的中点为P,求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.焦距为2c,且c,$\sqrt{2}$,2成等比数列.
(I)求椭圆C的标准方程;
(Ⅱ)点B坐标为(0,$\sqrt{2}$),问是否存在过点B的直线1交椭圆C于M,N两点,且满足$\overrightarrow{OM}$$⊥\overrightarrow{ON}$(O为坐标原点)?若存在,求出此时直线l的方程.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案