| A. | -6 | B. | -2 | C. | -1 | D. | 3 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$的可行域如图:
由z=x-2y得y=$\frac{1}{2}$x-$\frac{1}{2}$z,
平移直线y=$\frac{1}{2}$x-$\frac{1}{2}$z,
由图象可知当直线y=$\frac{1}{2}$x-$\frac{1}{2}$z,过点A时,
直线y=$\frac{1}{2}$x-$\frac{1}{2}$z的截距最大,此时z最小,
由$\left\{\begin{array}{l}{x-y=0}\\{2x+y-6=0}\end{array}\right.$得A(2,2),
代入目标函数z=x-2y,
得z=2-4=-2.
∴目标函数z=x-2y的最小值是-2.
故选:B.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 8 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=$\frac{1}{2}$ | B. | a≤$\frac{1}{2}$ | C. | a=-$\frac{1}{2}$ | D. | a≥$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com