精英家教网 > 高中数学 > 题目详情
6.设X为随机变量,若X~N(6,$\frac{1}{2}$),当P(X<a-2)=P(X>5)时,a的值为(  )
A.3B.5C.7D.9

分析 根据随机变量符合正态分布,又知正态曲线关于x=6对称,得到两个概率相等的区间关于x=6对称,得到关于a的方程,解方程即可.

解答 解:∵随机变量ξ服从正态分布N(6,8),P(X<a-2)=P(X>5),
∴a-2与5关于x=6对称,
∴a-2+5=12,
∴a=9,
故选:D.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查曲线关于x=6对称,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若点P为直线ρcosθ-ρsinθ-4=0上一点,点Q为曲线$\left\{\begin{array}{l}{x=t}\\{y=\frac{1}{4}{t}^{2}}\end{array}\right.$(t为参数)上一点,则|PQ|的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某学校随机抽取100名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则该校学生上学所需时间的均值估计为33.6.(精确到1分钟)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sinα-sinβ=$\frac{1}{3}$,cosα+cosβ=$\frac{3}{7}$,0<α,β<$\frac{π}{2}$,求sin$\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=($\sqrt{3}$sinωx+cosωx)cosωx-$\frac{1}{2}$(ω>0)的最小正周期为4π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)已知a、b、c分别△ABC内角A、B、C的对边,满足(2a-c)cosB=bcosC,求角B的值,并求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,x1,x2为正实数,且满足a+b=1
(1)求a2+$\frac{b^2}{4}$的最小值.
(2)求证:(ax1+bx2)(bx1+ax2)≥x1x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:“?∈[1,e],a>lnx”,命题q:“?x∈R,x2-4x+a=0””若“p∧q”是真命题,则实数a的取值范围是(  )
A.(1,4]B.(0,1]C.[-1,1]D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若在由正整数构成的无穷数列{an}中,对任意的正整数n,都有an≤an+1,且对任意的正整数k,该数列中恰有2k-1个k,则a2015=45.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}的前n项和为Sn=(a+1)n2+a,某三角形三边之比为a2:a3:a4,则该三角形的面积$\frac{{15\sqrt{3}}}{4}$.

查看答案和解析>>

同步练习册答案