精英家教网 > 高中数学 > 题目详情
16.已知等差数列{an}的前n项和为Sn=(a+1)n2+a,某三角形三边之比为a2:a3:a4,则该三角形的面积$\frac{{15\sqrt{3}}}{4}$.

分析 利用等差数列{an}的前n项和为Sn=(a+1)n2+a,确定三角形三边为a2=3,a3=5,a4=7,求出θ=120°,即可求出该三角形的面积.

解答 解:∵{an}是等差数列,∴a=0,Sn=n2,∴a2=3,a3=5,a4=7.
设三角形最大角为θ,由余弦定理,得cosθ=-$\frac{1}{2}$,∴θ=120°.
∴该三角形的面积S=$\frac{1}{2}$×3×5×sin120°=$\frac{{15\sqrt{3}}}{4}$.
故答案为:$\frac{{15\sqrt{3}}}{4}$.

点评 本题考查等差数列的求和,考查余弦定理,三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设X为随机变量,若X~N(6,$\frac{1}{2}$),当P(X<a-2)=P(X>5)时,a的值为(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.分形几何学是美籍法国数学家伯努瓦•曼德尔布罗(BenoitBMandelbrot)在20世纪70年代创立的一门新学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照
的分形规律可得到如图所示的一个树形图,则当n≥3时,第n(n∈N*)行空心圆点个数an与第n-1行及第n-2行空心
圆点个数an-1,an-2的关系式为an=an-1+an-2
第12行的实心圆点的个数是89.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)的定义域是[0,2],那么g(x)=$\frac{f({x}^{2})}{1+lg(x+1)}$的定义域是(  )
A.(-$\frac{9}{10}$,$\sqrt{2}$)∪(-1,-$\frac{9}{10}$)B.(-1,$\sqrt{2}$]C.(-1,-$\frac{9}{10}$)D.(-$\frac{9}{10}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为(  )
A.1B.$\frac{1}{2}\sqrt{5}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知四棱锥P-ABCD的底面四边形ABCD的对边互不平行,现用一平面α去截此四棱锥,且要使截面是平行四边形,则这样的平面α(  )
A.有且只有一个B.有四个C.有无数个D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,弧$\widehat{AEC}$是半径为a的半圆,AC为直径,点E为弧$\widehat{AC}$的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=$\sqrt{5}$a,FE=$\sqrt{6}$a.
(Ⅰ)证明:EB⊥FD;
(Ⅱ)已知点R为线段FB上的点,且FR=λFB,求当RD最短时,直线RE和平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合$A=\left\{{x\left|{y=\sqrt{1-x}}\right.}\right\}$,B={x|1≤3x≤9},则A∩B=(  )
A.[-1,0]B.[0,1]C.[-1,2]D.[1,2]

查看答案和解析>>

同步练习册答案