精英家教网 > 高中数学 > 题目详情
5.如图,弧$\widehat{AEC}$是半径为a的半圆,AC为直径,点E为弧$\widehat{AC}$的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=$\sqrt{5}$a,FE=$\sqrt{6}$a.
(Ⅰ)证明:EB⊥FD;
(Ⅱ)已知点R为线段FB上的点,且FR=λFB,求当RD最短时,直线RE和平面BDE所成的角的正弦值.

分析 (1)欲证EB⊥FD,而FD?平面BFD,可先证BE⊥平面BFD,根据直线与平面垂直的判定定理可知只需证BE与平面BFD内两相交直线垂直,而BE⊥AC,根据线面垂直的性质可知FC⊥BE,又FC、AC?平面BFD,FC∩AC=C,满足定理所需条件;
(2)RD最短时,RD⊥FB,过R做RH⊥平面BDF,∠REH即为RE和平面BDE所成的角,求出$RH=\frac{4}{5}a,RE=\frac{3}{{\sqrt{5}}}a$,所以$sinREH=\frac{{4\sqrt{5}}}{15}$.

解答 (1)证明:∵点E为弧AC的中点
∴∠ABE=$\frac{π}{2}$,即BE⊥AC
又∵FC⊥平面BED,BE?平面BED
∴FC⊥BE
又∵FC、AC?平面BFD,FC∩AC=C
∴BE⊥平面BFD而FD?平面BFD
∴EB⊥FD;
(2)解:RD最短时,RD⊥FB,过R做RH⊥平面BDE,则∠REH即为RE和平面BDE所成的角,
∵$RH=\frac{4}{5}a,RE=\frac{3}{{\sqrt{5}}}a$,∴$sinREH=\frac{{4\sqrt{5}}}{15}$.

点评 本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若在由正整数构成的无穷数列{an}中,对任意的正整数n,都有an≤an+1,且对任意的正整数k,该数列中恰有2k-1个k,则a2015=45.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}的前n项和为Sn=(a+1)n2+a,某三角形三边之比为a2:a3:a4,则该三角形的面积$\frac{{15\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是$\frac{1}{3}$,规定有一方累计2胜或者累计2和时,棋局结束.棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军.设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos2x-$\frac{1}{2}$,则(  )
A.f(x)为偶函数且最小正周期为πB.f(x)为奇函数且最小正周期为π
C.f(x)为偶函数且最小正周期为2πD.f(x)为奇函数且最小正周期为2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正数a,b,c满足a+b+c=6,求证:$\frac{1}{a(1+b)}+\frac{1}{b(1+c)}+\frac{1}{c(1+a)}≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,x-2>0,命题q:?x∈R,2x>x2,则下列说法中正确的是(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{a}{x}$-1(a∈R)
(Ⅰ)讨论函数f(x)的单调性
(Ⅱ)求证:ln2•ln3•ln4•…•lnn>$\frac{1}{n}$(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y满足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,则|x+y+1|的最大值为6.

查看答案和解析>>

同步练习册答案