【题目】已知,抛物线: 与抛物线: 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.
(1)若直线与抛物线交于点, ,且,求;
(2)证明: 的面积与四边形的面积之比为定值.
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖。抽奖规则如下:1、抽奖方案有以下两种:方案,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球,则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中。
抽奖条件是:顾客购买商品的金额满100元,可根据方案抽奖一;满足150元,可根据方案抽奖(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案抽奖三次或方案抽奖两次或方案各抽奖一次)。已知顾客在该商场购买商品的金额为250元。
(1)若顾客只选择根据方案进行抽奖,求其所获奖金为15元的概率;
(2)当若顾客采用每种抽奖方式的可能性都相等,求其最有可能获得的奖金数(0元除外)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是( )
A.命题“,”的否定是“,”.
B.在中,.
C.已知某6个数据的平均数为3,方差为2,现又加入一个新数据3,则此时这7个数的平均数和方差不变.
D.从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则事件“至多一个红球”与“都是红球”互斥且对立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中在校学生2000人为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如表:
高一年级 | 高二年级 | 高三年级 | |
跑步 | a | b | c |
登山 | x | y | z |
其中a:b::3:5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,现用分层抽样方式从中抽取一个100个人的样本进行调查,则高二年级参与跑步的学生中应抽取
A. 6人B. 12人C. 18人D. 24人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,抛物线: 与抛物线: 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.
(1)若直线与抛物线交于点, ,且,求;
(2)证明: 的面积与四边形的面积之比为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com