精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,过椭圆C: 的左顶点A作直线l,与椭圆C和y轴正半轴分别交于点P,Q.

(1)若AP=PQ,求直线l的斜率;
(2)过原点O作直线l的平行线,与椭圆C交于点M,N,求证: 为定值.

【答案】
(1)解:A(﹣2,0),设Q(0,m)(m>0),

∵AP=PQ,∴P(﹣1, ),

代入椭圆方程得: =1,

解得m=

∴直线l的斜率为


(2)证明:设直线l的斜率为k(k> ),直线l的方程为:y=k(x+2),

令x=0得y=2k,即Q(0,2k),

∴AQ= =2

联立方程组 ,消元得:(1+4k2)x2+16k2x+16k2﹣4=0,

∴x1+x2= ,x1x2=

∴AP= =

∴APAQ=

直线MN的方程为y=kx,

联立方程组 ,得(1+4k2)x2﹣4=0,

设N(x3,y3),M(﹣x3,﹣y3),

∴MN=2ON=2 =4

= =

为定值


【解析】(1)根据题意设出点Q的坐标,然后利用中点坐标公式将点P的坐标用点A、点Q的坐标表示,并代入椭圆方程求出点Q的坐标后即可求解;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e|x| , 将函数f(x)的图象向右平移3个单位后,再向上平移2个单位,得到函数g(x)的图象,函数h(x)= 若对于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),则实数λ的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)与g(x)的图象关于原点对称,且它们的图象拼成如图所示的“Z”形折线段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五个点.则满足题意的函数f(x)的一个解析式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明设置的手机开机密码若连续3次输入错误,则手机被锁定,5分钟后,方可重新输入.某日,小明忘记了开机密码,但可以确定正确的密码是他常用的4个密码之一,于是,他决定逐个(不重复)进行尝试.
(1)求手机被锁定的概率;
(2)设第X次输入后能成功开机,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景点拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为36米,其中大圆弧所在圆的半径为14米,设小圆弧所在圆的半径为x米,圆心角为θ(弧度).

(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为16元/米,设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列 ,若满足 ,则称数列 为“ 数列”.
若存在一个正整数 ,若数列 中存在连续的 项和该数列中另一个连续的 项恰好按次序对应相等,则称数列 是“ 阶可重复数列”,
例如数列 因为 按次序对应相等,所以数列 是“ 阶可重复数列”.
(I)分别判断下列数列 .是否是“ 阶可重复数列”?如果是,请写出重复的这 项;
(II)若项数为 的数列 一定是 “ 阶可重复数列”,则 的最小值是多少?说明理由;
(III)假设数列 不是“ 阶可重复数列”,若在其最后一项 后再添加一项 ,均可 使新数列是“ 阶可重复数列”,且 ,求数列 的最后一项 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=6,
(1)求AB的长;
(2)求 的值.

查看答案和解析>>

同步练习册答案