【题目】已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|<|PF2|,线段PF1的垂直平分线经过点F2,若椭圆的离心率为e1,双曲线的离心率为e2,则
的最小值为( )
A.2B.﹣2C.6D.﹣6
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
底面ABC,
是边长为2的正三角形,
,E,F分别为BC,
的中点.
![]()
1
求证:平面
平面
;
2
求三棱锥
的体积;
3
在线段
上是否存在一点M,使直线MF与平面
没有公共点?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
![]()
(1)求证:AD⊥平面BFED;
(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆
,点
是圆
内一个定点,
是圆
上任意-一点,线段
的垂直平分线
和半径
相交于点
,连接
,记动点
的轨迹为曲线
.
![]()
(1)求曲线
的方程;
(2)若
、
是曲线
上关于原点对称的两个点,点
是曲线
.上任意-一点(不同于点
、
),当直线
、
的斜率都存在时,记它们的斜率分别为
、
,求证:
的为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴为正半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
与曲线
相交于
两点,直线
过定点
且倾斜角为
交曲线
于
两点.
(1)把曲线
化成直角坐标方程,并求
的值;
(2)若
成等比数列,求直线
的倾斜角
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
九章算术
给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除
中,
,
,
,
,两条平行线
与
间的距离为h,直线
到平面
的距离为
,则该羡除的体积为
已知某羡除的三视图如图所示,则该羡除的体积为
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com