【题目】如图,的外心为O,E是AC的中点,直线OE交AB于点D,M、N分别是的外心、内心.若AB=2BC,证明:为直角三角形.
【答案】见解析
【解析】
证法1:如图,由于点O、M皆在BC的中垂线上
设直线OM交BC于点P,交于点F
则P是BC的中点,F是BC的的中点
因N是的内心,所以,D、N、F三点共线,且
又OE是AC的中垂线,则DC=DA
而DF、OE为∠BDC的内、外角平分线,故
则OF为的直径,所以,OM=MF
又,则NF=BF
作于点H,于是
且
所以,,故DN=BF=NF
因此,MN是的中位线
从而,
而,则
故为直角三角形.
证法2:记,,
因DE是AC的中垂线,所以,AD=CD=b
有 ①
延长DN交于点F,并记FN=e,DN=x
则FB=FC=FN=e
对圆内接四边形BDCF应用托勒密定理得
即 ②
由式①、②得
故知N是弦DF的中点
而M为外心,所以,
故为直角三角形.
科目:高中数学 来源: 题型:
【题目】某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次摸奖停止的概率;
(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)6个人按下列要求站一横排,甲、乙必须相邻,有多少种不同的站法?
(2)6个人按下列要求站一横排,甲不站左端,乙不站右端.有多少种不同的站法?
(3)用0,1,2,3,4,5这六个数字可以组成多少个六位数且是奇数(无重复数字的数)?
(4)用0,1,2,3,4,5这六个数字可以组成多少个个位上的数字不是5的六位数(无重复数字的数)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一走廊拐角处的横截面如图所示,已知内壁和外壁都是半径为1m的四分之一圆弧,分别与圆弧相切于两点,且两组平行墙壁间的走廊宽度都是1m.
(1)若水平放置的木棒的两个端点分别在外壁和上,且木棒与内壁圆弧相切于点设试用表示木棒的长度
(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是数学家伯努瓦.曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第行黑圈的个数为,则________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:
(年) | 2 | 3 | 4 | 5 | 6 |
(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
参考公式:,.
(1)若知道对呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com