精英家教网 > 高中数学 > 题目详情

设函数f(x)=ax2bxb-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

(1)3和-1(2)(0,1)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分)某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义域为A的函数f(x),如果任意的x1x2A,当x1x2时,都有f(x1)<f(x2),则称函数f(x)是A上的严格增函数;函数f(k)是定义在N*上,函数值也在N*中的严格增函数,并且满足条件f(f(k))=3k.
(1)证明:f(3k)=3f(k);
(2)求f(3k-1)(k∈N*)的值;
(3)是否存在p个连续的自然数,使得它们的函数值依次也是连续的自然数;若存在,找出所有的p值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2bxb-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2bxb-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).

(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)若函数在区间上单调,求的取值范围;
(2)若对任意,都有成立,且函数的图象经过点
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m、n为正整数,a>0且a≠1,且logam+loga+loga+…+loga=logam+logan,求m、n的值.

查看答案和解析>>

同步练习册答案