精英家教网 > 高中数学 > 题目详情

解不等式:

解析试题分析:依题意可得对数的真数要大于零,所以可得,又因为以10为底的对数是增函数所以可得.故可解得.本小题的关键是对数的真数要大于零同时含对数的不等式中1化为.
试题解析:因为由解得.故不等式的解集为.
考点:1.含对数不等式.2.对数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2bxb-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录。为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润是大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足.
(1)求的解析式;
(2)对于(1)中得到的函数,试判断是否存在,使在区间上的值域为?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种海洋生物身体的长度(单位:米)与生长年限t(单位:年)
满足如下的函数关系:.(设该生物出生时t=0)
(1)需经过多少时间,该生物的身长超过8米;
(2)设出生后第年,该生物长得最快,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,其中.函数在区间上有最大值为4,设.
(1)求实数的值;
(2)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一块边长为4米的正方形钢板,现对其进行切割,焊接成一个长方体无盖容器(切、焊损耗忽略不计),有人用数学知识作了如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成长方体。
(Ⅰ)求这种切割、焊接而成的长方体的最大容积.
(Ⅱ)请问:能重新设计,使所得长方体的容器的容积吗?若能、给出你的一种设计方案。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里为常数,
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求的解析式;
(2)解关于的方程
(3)设时,对任意总有成立,求的取值范围.

查看答案和解析>>

同步练习册答案