精英家教网 > 高中数学 > 题目详情
10.设命题p:函数$y=sin(2x+\frac{π}{6})$的图象关于直线$x=\frac{π}{6}$对称;命题q:函数y=|3x-1|在[-1,+∞)上是增函数.则下列判断错误的是(  )
A.p为假B.¬q为真C.p∧q为假D.p∨q为真

分析 令2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,可得函数的对称轴,即可判断命题P是否正确;将含有绝对值符合的函数转化为分段函数求单调区间,来判断命题q是否正确,再利用复合命题真值表分析求解.

解答 解:∵函数$y=sin(2x+\frac{π}{6})$,令2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,解得:x=kπ+$\frac{π}{6}$,k∈Z,当k=0时,x=$\frac{π}{6}$是函数$y=sin(2x+\frac{π}{6})$的对称轴,
∴命题P正确;
∵函数y=|3x-1|=$\left\{\begin{array}{l}{{3}^{x}-1}&{x≥0}\\{1-{3}^{x}}&{x<0}\end{array}\right.$,
∴函数在(0,+∞)上是增函数,在(-∞,0)上是减函数,故命题q错误.
根据复合命题真值表,A错误;B正确;C正确;D错误.
故选:A.

点评 本题借助考查命题的真假判断,考查正弦函数的对称性及指数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a+$\frac{1}{4^x+1}$是奇函数.
(1)求实数a的值;   
(2)确定函数f(x)的单调性;    
(3)当x∈[-1,2)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值
(2)已知cos(π+α)=-$\frac{1}{2}$,且α是第四象限角,计算:$\frac{sin[α+(2n+1)π]+sin[α-(2n+1)π]}{sin(α+2nπ)•cos(α-2nπ)}$(n∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2sinxcos(φ-x)-\frac{1}{2}$($0<φ<\frac{π}{2}$)的图象过点$(\frac{π}{3},1)$.
(Ⅰ)求φ的值;        
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(-1)nbn+an,求数列{cn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)根据频率分布直方图,估计这100名学生语文成绩的平均数、中位数、众数;
(2)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,80)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从甲、乙、丙、丁、戊5名同学中任选4名参加接力赛,其中,甲不跑第一棒,乙、丙不跑相邻两棒,则不同的选排总数为(  )
A.48B.56C.60D.68

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与2x-y+6=0.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.各项均为正数的等比数列{an},其前n项和为Sn.若a2-a5=-78,S3=13,则数列{an}的通项公式an=3n-1

查看答案和解析>>

同步练习册答案