精英家教网 > 高中数学 > 题目详情
12.在△ABC中,A=30°,AB=2,且△ABC的面积为$\sqrt{3}$,则△ABC外接圆的半径为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2D.4

分析 由已知利用三角形面积公式可求b,进而利用余弦定理解得a,根据正弦定理即可求得外接圆半径R的值.

解答 解:在△ABC中,由A=30°,c=AB=2,得到S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$b×2×$\frac{1}{2}$=$\sqrt{3}$,
解得b=2$\sqrt{3}$,根据余弦定理得:a2=12+4-2×2$\sqrt{3}$×2×$\frac{\sqrt{3}}{2}$=4,解得a=2,
根据正弦定理得:$\frac{a}{sinA}=2R$(R为外接圆半径),则R=$\frac{2}{2×\frac{1}{2}}$=2.
故选:C.

点评 本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,△A'B'C'是△ABC的直观图,其中A'B'=A'C',那么△ABC是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3,4,5,6},B={3,4,5,6,7,8},在集合A∪B中任取一个元素,则该元素是集合A∩B中的元素的概率为(  )
A.$\frac{1}{6}$B.$\frac{3}{7}$C.$\frac{5}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,各个顶点围成的菱形面积为2$\sqrt{3}$.
(1)求C的方程;
(2)过右顶点A的直线l交椭圆C于A,B两点.
①若|AB|=$\frac{4\sqrt{15}}{7}$,求l的方程;
②点P(0,y0)在线段AB的垂直平分线上,且$\overrightarrow{PA}$$•\overrightarrow{PB}$=3,求y0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足:a1=1,an+1=2an+1.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an}的通项公式;
(3)设${c_n}=\frac{{{a_n}+1}}{{n(n+1){2^n}}}$,求数列{cn}的前n项和Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a=(1,\sqrt{3})$,$|{\overrightarrow b}|=4$,且($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C所对的边分别是a,b,c,若sinC+sin(B-A)=2sin2A,且 c=2,$∠C=\frac{π}{3}$,则△ABC的面积为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若${(1+x)^6}{(1-2x)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{11}}{x^{11}}$,求
(1)a1+a2+a3+…+a11
(2)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2
(1)若曲线f(x)的一条切线的斜率是2,求切点的坐标;
(2)求在点(-1,f(-1))处的切线方程;
(3)求过点(1,-2)处的切线方程.

查看答案和解析>>

同步练习册答案