精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A、B、P三点的平面交FD于M,交FE于N.

(1)求证:MN∥平面CDE;
(2)当平面PAB⊥平面CDE时,求t的值.
(1)见解析(2)t=2
(1)证明:因为AB∥DE,AB在平面FDE外,所以AB∥平面FDE.又MN是平面PAB与平面FDE的交线,所以AB∥MN,故MN∥DE.因为MN∥平面CDE,DE平面CDE,所以MN∥平面CDE.
(2)解:取AB中点G、DE中点H,连结GH,则由GH∥PC知P、C、G、H在同一平面上,并且由PA=PB知PG⊥AB.而与(1)同理可证AB平行于平面PAB与平面CDE的交线,因此,PG也垂直于该交线.又平面PAB⊥平面CDE,所以PG⊥平面CDE,所以PG⊥CH,于是△CGH∽△PCG,所以,即,解得t=2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.

(1)求证:DE∥平面BCP.
(2)求证:四边形DEFG为矩形.
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.

(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;
(2)用反证法证明:直线ME与BN是两条异面直线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.

(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△中,平面分别是上的动点,且

(1)求证:不论为何值,总有平面平面
(2)当为何值时,平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知不同直线和不同平面,给出下列命题:
  ②  ③异面 
 其中错误的命题有(  )个
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,则(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为△ABC所在平面外一点,O为P在平面ABC内的射影.
(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;
(2)若PA⊥BC,PB⊥AC,则O是△ABC的________心;
(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.

查看答案和解析>>

同步练习册答案