【题目】如图所示,图①是棱长为1的小正方体,图②,③是由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别将第1层,第2层,…,第
层的小正方体的个数记为
,解答下列问题:
![]()
(1)按照要求填表:
| 1 | 2 | 3 | 4 | … |
| 1 | 3 | 6 | _ | … |
(2)
__________.
科目:高中数学 来源: 题型:
【题目】下列随机事件:
①某射手射击一次,可能命中
环,
环,
环,
,
环;
②一个小组有男生
人,女生
人,从中任选
人进行活动汇报;
③一只使用中的灯泡寿命长短;
④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;
⑤中秋节前夕,某市有关部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.
这些事件中,属于古典概型的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出
名员工从事第三产业,调整后他们平均每人每年创造利润为
万元(
),剩下的员工平均每人每年创造的利润可以提高
.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则调整员工从事第三产业的人数应在什么范围?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
的各棱长均为2,
面
,E,F分别为棱
的中点.
(1)求证:直线BE∥平面
;
(2)平面
与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
,底面
为菱形,
为
上的点,过
的平面分别交
于点
,且
平面
.
(1)证明:
;
(2)当
为
的中点,
,
与平面
所成的角为
,求平面AMHN与平面ABCD所成锐二面角的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
年入流量 |
|
|
|
发电量最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的两个焦点分别为F1,F2,离心率为
,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①函数
为奇函数;②当
时,
;③
是函数
的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数
,
的图象相邻两条对称轴间的距离为
,______.
(1)求函数
的解析式;
(2)求函数
在
上的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com