精英家教网 > 高中数学 > 题目详情

(本小题满分8分)已知函数.
(1)求证:函数上为增函数;
(2)当函数为奇函数时,求的值;
(3)当函数为奇函数时, 求函数上的值域.

(1)任取
因为所以
 故,所以在R上为增函数
(2)(3)

解析试题分析:(1)任取
因为所以
 故
所以在R上为增函数………………3分
(2)因在x=0 有意义,又为奇函数,则
……………………5分
(3)由x∈[-1,2]得
……… ……8分
考点:本题考查了函数的性质及值域的求法
点评:掌握函数单调性的步骤及应用时解决函数问题的常见方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 为常数,
(1)当时,求函数处的切线方程;
(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
,其中.
(1) 若,求的值;
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某种产品投放市场以来,通过市场调查,销量t(单位:吨)与利润Q(单位:万元)的变化关系如右表,现给出三种函数,请你根据表中的数据,选取一个恰当的函数,使它能合理描述产品利润Q与销量t的变化,求所选取的函数的解析式,并求利润最大时的销量.

销量t
1
4
6
利润Q
2
5
4.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知定义域为的偶函数.
(1)求实数的值;
(2)判断并证明的单调性;
(3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中为常数
(1)为奇函数,试确定的值
(2)若不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的增函数,且对一切满足.
(1)求的值;
(2)若解不等式.

查看答案和解析>>

同步练习册答案