精英家教网 > 高中数学 > 题目详情

,其中为常数
(1)为奇函数,试确定的值
(2)若不等式恒成立,求实数的取值范围

(1);(2)

解析试题分析:(1)由得,   6分
(2)
因为,所以   8分
因为恒成立
恒成立
所以       12分
考点:本题主要考查函数的奇偶性,指数函数性质。
点评:中档题,奇函数在x=0有定义,则f(0)=0,可直接应用于解选择题、填空题,对恒成立问题,往往要转化成求函数的最值问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)求它的定义域,值域和单调区间;
(2)判断它的奇偶性和周期性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数满足:对任意的实数
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分8分)已知函数.
(1)求证:函数上为增函数;
(2)当函数为奇函数时,求的值;
(3)当函数为奇函数时, 求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数 
(1)设处取得极值,且,求的值,并说明是极大值点还是极小值点;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)作出的图像;
(2)求满足的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数
⑴若函数的图象过原点,且在原点处的切线斜率是,求的值;
⑵若函数在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分)如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.
(1)判断函数是否具有“性质”,若具有“性质”求出所有的值;若不具有“性质”,请说明理由.
(2)已知具有“性质”,且当,求上的最大值.
(3)设函数具有“性质”,且当时,.若交点个数为2013个,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设是定义在上的单调增函数,满足,

求(1)
(2)若,求的取值范围。

查看答案和解析>>

同步练习册答案