精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)求它的定义域,值域和单调区间;
(2)判断它的奇偶性和周期性。

(1) ,的单调递减区间为
;同理可得单调递增区间为
(2) 是周期函数,且最小正周期为,是非奇非偶函数

解析试题分析:解:由可得
的定义域为 
可得,故的单调递减区间为
;同理可得单调递增区间为
(2)因没有意义
是非奇非偶函数
是周期函数,且最小正周期为,可知是周期函数,且最小正周期为
考点:本试题考查了函数的性质。
点评:对于函数的奇偶性和单调性的判定,一般运用定义法来判定,同时能结合三角函数的单调区间来求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数的定义域为,对于任意的,都有,且当时,.
(1)求证:为奇函数;   (2)求证:上的减函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,且
(1)求
(2)判断的奇偶性;
(3)试判断上的单调性,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 为常数,
(1)当时,求函数处的切线方程;
(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
(1)已知函数
(2)已知函数分别由下表给出:


1
2
 
3
6

1
2

2
1
  
用分段函数表示,并画出函数的图象。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数满足.
(Ⅰ)求的解析式及其定义域;
(Ⅱ)写出的单调区间并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中为常数
(1)为奇函数,试确定的值
(2)若不等式恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案