精英家教网 > 高中数学 > 题目详情

(1)1(2)

解析19.试题分析:(1)由得,
,即
.......................................4分
(2)由(1)知,令
.........................7分
的最小值为4,故实数m的取值范围是.................10分
考点:本试题考查了含有绝对值的不等式的求解,以及分段函数的最值。
点评:解决该是的关键是理解一元二次不等式的解集是不等式成立的充要条件。同时对于含有绝对值的函数,利用分段函数的思想得到其最值,这也是在选修部分中常考的知识点之一,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)求它的定义域,值域和单调区间;
(2)判断它的奇偶性和周期性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知.
(1)求的表达式;
(2)若函数和函数的图象关于原点对称,
(ⅰ)求函数的解析式;
(ⅱ)若在区间上是增函数,求实数l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知
(Ⅰ)若,求使函数为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求a的值;
(2)若a>1,求函数f(x)的单调区间与极值点;
(3)设函数是偶函数,若过点A(1,m)可作曲线y=f(x)的三条切线,求实数m的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数满足:对任意的实数
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分8分)已知函数.
(1)求证:函数上为增函数;
(2)当函数为奇函数时,求的值;
(3)当函数为奇函数时, 求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分)如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.
(1)判断函数是否具有“性质”,若具有“性质”求出所有的值;若不具有“性质”,请说明理由.
(2)已知具有“性质”,且当,求上的最大值.
(3)设函数具有“性质”,且当时,.若交点个数为2013个,求的值.

查看答案和解析>>

同步练习册答案