精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
某种产品投放市场以来,通过市场调查,销量t(单位:吨)与利润Q(单位:万元)的变化关系如右表,现给出三种函数,请你根据表中的数据,选取一个恰当的函数,使它能合理描述产品利润Q与销量t的变化,求所选取的函数的解析式,并求利润最大时的销量.

销量t
1
4
6
利润Q
2
5
4.5

,利润最大时的销量为4.5吨

解析试题分析:由单调性或代入验证可得,应选函数,   4分
由条件
.····························· 8分

∴当时,的最大值是.······················ 10分
∴利润最大时的销量为4.5吨························ 12分
考点:本试题主要是考查了函数模型是应用。
点评:对于已知中的数据能分析得到不是单调的函数,排除了对数函数和一次函数,因此只能是二次函数,进而代点得到解析式。然后结合二次函数的对称轴和开口方向得到最值。属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数a∈R且).
(1)求函数f(x)的单调区间;
(2)若函数yf(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知
(Ⅰ)若,求使函数为偶函数。
(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数满足:对任意的实数
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知函数处有极值.
(Ⅰ)求实数值;
(Ⅱ)求函数的单调区间;
(Ⅲ)试问是否存在实数,使得不等式对任意 及
恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分8分)已知函数.
(1)求证:函数上为增函数;
(2)当函数为奇函数时,求的值;
(3)当函数为奇函数时, 求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数 
(1)设处取得极值,且,求的值,并说明是极大值点还是极小值点;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数
⑴若函数的图象过原点,且在原点处的切线斜率是,求的值;
⑵若函数在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数是偶函数,求的解析式;(3分)
(2)在(1)的条件下,求函数上的最大、最小值;(3分)
(3)要使函数上是单调函数,求的范围。(4分)

查看答案和解析>>

同步练习册答案