精英家教网 > 高中数学 > 题目详情
4.为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人.
(Ⅰ)根据以上数据建立2×2列联表;
(Ⅱ)能否在犯错误不超过0.05的前提下认为该药物有效?
参考
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ (n=a+b+c+d)

分析 (1)根据所给的条件写出列联表;
(2)根据列联表做出观测值,把观测值同临界值进行比较,得到在犯错误的概率不超过0.05的前提下认为该药物有效.

解答 解:(1)2×2列联表

患流感未患流感总计
服用中药21820
未服用中药81220
总计103040
(2)K2=$\frac{40×(2×12-8×18)^{2}}{10×30×20×20}$=4.8>3.841,
故在犯错误的概率不超过0.05的前提下认为该药物有效.

点评 本题主要考查独立性检验的应用,解题的关键是正确运算出观测值,理解临界值对应的概率的意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数y=4x-2x+1+2,x∈[-1,2].
(1)设t=2x,求t的取值范围;
(2)求函数的最值,并求出取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知四棱锥 P-ABCD的底面ABCD是正方形,侧棱PA与底面垂直,且PA=AB,若该四棱锥的侧面积为16+16$\sqrt{2}$,则该四棱锥外接球的表面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=1,Sn为数列{an}的前n项和,当n≥2时,${a_n},{S_n},{S_n}-\frac{1}{2}$成等比数列,则an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2n-1}-\frac{1}{2n-3},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1垂直于底面ABC,且AA1=4,则此三棱柱外接球的表面积为(  )
A.$\frac{13}{3}π$B.$\frac{16}{3}π$C.$\frac{42}{3}π$D.$\frac{64}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边经过点(-2,1),则cos2α=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式kx2-2x+6k<0(k≠0)
(1)若不等式的解集为{x|x<-3或x>-2},求k的值;
(2)若不等式的解集为{x|x≠$\frac{1}{k}$},求k的值;
(3)若不等式的解集为空集,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f($\frac{1}{x}$+1)=$\frac{1}{{x}^{2}}$-1,则f(x)的解析式为(  )
A.f(x)=x(x-2)B.f(x)=x(x-2)(x≠0)C.f(x)=x(x-2)(x≠1)D.f(x)=x(x-2)(x≠0且x≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.f(x)=2sin(x+$\frac{π}{2}$)sin(x+$\frac{7π}{3}$)-$\sqrt{3}$sin2x+sin(x+π)cos(x+3π)
(1)求函数f(x)的单调增区间及对称轴方程;
(2)若△ABC的三边分别为a,b,c所对的角分别为A,B,C,若三边成等比数列,求f(B)的取值范围.

查看答案和解析>>

同步练习册答案