| A. | $\frac{13}{3}π$ | B. | $\frac{16}{3}π$ | C. | $\frac{42}{3}π$ | D. | $\frac{64}{3}π$ |
分析 由题意推出三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,求出球的半径,即可求出外接球的表面积.
解答 解:∵正三棱柱ABC-A1B1C1的中,底面边长为2,高为4,
由题意可得:三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,表面积为:4πr2.
球心到底面的距离为2,
底面中心到底面三角形的顶点的距离为:$\frac{2}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{2\sqrt{3}}{3}$,
所以球的半径为r=$\sqrt{4+\frac{4}{3}}$=$\frac{4\sqrt{3}}{3}$.
外接球的表面积为:4πr2=$\frac{64}{3}$π
故选:D.
点评 本题考查空间想象能力,计算能力;三棱柱上下底面中心连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$π | B. | $\frac{\sqrt{3}}{4}$π | C. | $\frac{\sqrt{3}}{2}$π | D. | $\sqrt{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com