精英家教网 > 高中数学 > 题目详情
抛物线y2=8x的焦点到准线的距离是(  )
A.1B.2C.4D.8
C
抛物线y2=8x的焦点为(2,0),准线方程为x=-2,焦点到准线的距离为4.故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是抛物线的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为 (  )
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.

(1)求p的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )
A.(0,2)B.[0,2]
C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线Cy2=2px(p>0)的焦点为F,点MC上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4xy2=8xB.y2=2xy2=8x
C.y2=4xy2=16xD.y2=2xy2=16x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以x轴为对称轴,原点为顶点的抛物线上的一点P(1,m)到焦点的距离为3,则其方程是
A.y=4x2B.y=8x2      C.y2=4x          D.y2=8x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在抛物线y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是(  ).
A.(-2,1) B.(1,2)C.(2,1) D.(-1,2)

查看答案和解析>>

同步练习册答案