精英家教网 > 高中数学 > 题目详情
已知抛物线
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.
(1);(2);(3)直线轴相垂直

试题分析:(1)本题考查抛物线的定义,由于直线是已知抛物线的的准线,而圆心在抛物线上的圆既然与准线相切,则它必定过抛物线的焦点,所以所有的圆必过抛物线的焦点,即定点;(2)这是直线与抛物线相交问题,设如设,则,两式相减有,则,下面就是要求,为此,我们设直线方程为,把它与抛物线方程联立方程组,消去,就可得到关于的方程,可得,只是里面含有,这里解题的关键就是已知条件怎样用?实际上有这个条件可得,这样与刚才的合起来就能求出;(3)设成等差数列即,仿照(2)此式为①,由于直线可能与轴垂直,但不会与轴垂直,设直线的方程为,代入抛物线方程消去得关于的二次方程,可得,这样①式可化为,从而得到,即直线的方程为,与轴垂直.
试题解析:(1) 由定义可得定点(1,0);(4分)
(2)设,由,得(5分)
由方程组,得
(7分)联立上述方程求得:.(9分)
(3)(理)设直线的方程为,代入,得:,设,则(11分)

,即
,即:
由此得:(15分)
所以当直线的方程为时,也就是成立的充要条件是直线轴相垂直。(16分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:,点A、B在抛物线C上.

(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线上的任意一点到该抛物线焦点的距离比该点到轴的距离多1.

(1)求的值;
(2)如图所示,过定点(2,0)且互相垂直的两条直线分别与该抛物线分别交于四点.
(i)求四边形面积的最小值;
(ii)设线段的中点分别为两点,试问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点作直线交抛物线于A、B两点,若线段AB中点的横坐标为3,则等于          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px(p≠0)上存在关于直线x+y=1对称的相异两点,则实数p的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px(p>0)的焦点为F,P、Q是抛物线上的两个点,若△PQF是边长为2的正三角形,则p的值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,为该抛物线上三点,若,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=8x的焦点到准线的距离是(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案