精英家教网 > 高中数学 > 题目详情
设抛物线Cy2=2px(p>0)的焦点为F,点MC上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4xy2=8xB.y2=2xy2=8x
C.y2=4xy2=16xD.y2=2xy2=16x
C
M(x0y0),A(0,2),MF的中点为N.
y2=2pxF,∴N点的坐标为.
由抛物线的定义知,x0=5,∴x0=5-.∴y0.
∵|AN|=,∴|AN|2.
2.
-2=0.整理得p2-10p+16=0.
解得p=2或p=8.∴抛物线方程为y2=4xy2=16x
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=2px(p≠0)上存在关于直线x+y=1对称的相异两点,则实数p的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为(  )
A.y=x-1或y=-x+1
B.y=(x-1)或y=-(x-1)
C.y=(x-1)或y=-(x-1)
D.y=(x-1)或y=-(x-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=8x的焦点到准线的距离是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y=2x2的焦点的直线与抛物线交于A(x1,y1),B(x2,y2),则x1x2=(  )
A.-2B.-C.-4D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求由抛物线y2=x-1与其在点(2,1),(2,-1)处的切线所围成的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l与抛物线分别交于AB两点,则的值等于(  ).
A.5B.4 C.3D.2

查看答案和解析>>

同步练习册答案