精英家教网 > 高中数学 > 题目详情
已知中心在原点O,焦点在x轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线的斜率依次成等比数列,
面积的取值范围.
(1) ;(2).

试题分析:(1)先设出椭圆方程为,再根据条件离心率为及椭圆上的点,代入即可得到椭圆方程;(2)先设出直线方程,然后联立椭圆方程得到.再由直线的斜率依次成等比数列得到,由得到.代入中及直线的斜率存在得到,且,然后由点到直线的距离公式及两点间距离公式得到面积.最后由基本不等式得到,从而得到面积的取值范围.
试题解析:(1) 由题意可设椭圆方程为,则(其中),且,故.
所以椭圆的方程为.
(2)由题意可知,直线的斜率存在且不为0.故可设直线

,消去



因为直线的斜率依次成等比数列,
所以,即.
,所以,即.
由于直线的斜率存在,且,得,且
为点到直线的距离,则

所以
面积的取值范围为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系上取两个定点,再取两个动点
(I)求直线交点的轨迹的方程;
(II)已知,设直线:与(I)中的轨迹交于两点,直线 的倾斜角分别为,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为双曲线的左焦点,在轴上点的右侧有一点,以为直径的圆与双曲线左、右两支在轴上方的交点分别为,则的值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若实数满足(其中是自然底数),则的最小值为_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两个不相等的非零实数,则方程所表示的曲线可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点F作一直线l交抛物线于A、B两点,以AB为直径的圆与该抛物线的准线l的位置关系为(     )
A. 相交 B. 相离 C. 相切 D. 不能确定

查看答案和解析>>

同步练习册答案