| A. | (-1,2) | B. | (-∞,-1]∪[2,+∞) | C. | [-1,2] | D. | (-∞,-1)∪(2,+∞) |
分析 三次函数y=$\frac{1}{3}$x3+bx2+(b+2)x+3的单调性,通过其导数进行研究,故先求出导数,利用其导数恒大于0即可解决问题.
解答 解:∵y=$\frac{1}{3}$x3+bx2+(b+2)x+3,
∴y′=x2+2bx+b+2,
∵f(x)是R上的单调增函数,
∴x2+2bx+b+2≥0恒成立,
∴△≤0,即b2-b-2≤0,
则b的取值是-1≤b≤2.
∴y=$\frac{1}{3}$x3+bx2+(b+2)x+3在R上不是单调增函数,
实数b取值范围是b<-1或b>2,
故选:D.
点评 本题考查函数的单调性及单调区间、利用导数解决含有参数的单调性问题,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com