| A. | 2 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{π}{4}$ |
分析 根据拐点的定义,结合导数公式求出M的坐标,利用直线的斜率公式进行求解即可.
解答 解:函数的导数f′(x)=2+cosx+sinx,
f''(x)=-sinx+cosx,
由f''(x)=-sinx+cosx=0得sinx=cosx,即tanx=1,
不妨取x=$\frac{π}{4}$,则f($\frac{π}{4}$)=2×$\frac{π}{4}$+sin$\frac{π}{4}$-cos$\frac{π}{4}$=$\frac{π}{2}$,即M($\frac{π}{4}$,$\frac{π}{2}$),
则直线OM的斜率k=$\frac{\frac{π}{2}}{\frac{π}{4}}$=2,
故选:A
点评 本题主要考查函数的导数的计算,根据拐点的定义求出M的坐标是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,3] | B. | [-1,2] | C. | [-1,0] | D. | [-1,0]∪[2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com