精英家教网 > 高中数学 > 题目详情
13.设点P在圆x2+(y-6)2=5上,点Q在抛物线x2=4y上,则|PQ|的最小值为$\sqrt{5}$.

分析 设圆心为C,则当|PQ|最小时,P,Q,C三点共线,即|PQ|=|CQ|-|CP|=|CQ|-$\sqrt{5}$,求出|CP|的最小值,即可得出结论

解答 解:设点Q(x,y),则x2=4y,
圆x2+(y-6)2=5的圆心C(0,6),半径r=$\sqrt{5}$,
由圆的对称性可得,当|PQ|的最小时,C,P,Q三点共线,即|PQ|=|CQ|-|CP|.
∴|PQ|=$\sqrt{{x}^{2}+(y-6)^{2}}$-$\sqrt{5}$=$\sqrt{{y}^{2}-8y+36}$-$\sqrt{5}$=$\sqrt{(y-4)^{2}+20}$-$\sqrt{5}$≥2$\sqrt{5}$-$\sqrt{5}$=$\sqrt{5}$.
故答案为$\sqrt{5}$.

点评 本题考查抛物线上的动点和圆上的动点间的距离的最小值,解题时要认真审题,注意两点间距离公式和配方法的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的排法种数是(  )
A.36B.72C.48D.108

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知p:2x2-9x+a<0,q:$\left\{\begin{array}{l}{{x}^{2}-7x+10<0}\\{-{x}^{2}+x+6>0}\end{array}\right.$且非q是非p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A,B为抛物线y2=x上相异两点,其纵坐标分别为-1,2,分别以A,B为切点作抛物线的切线l1,l2,设l1,l2相交于点P.
(Ⅰ)求点P的坐标;
(Ⅱ)M为A,B间抛物线段上任意一点,设$\overrightarrow{PM}=λ\overrightarrow{PA}+μ\overrightarrow{PB}$,试判断$\sqrt{λ}+\sqrt{μ}$是否为定值,如果为定值,求出该定值,如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在边长为4的等边△ABC中,$\overrightarrow{AB}•\overrightarrow{BC}$的值等于(  )
A.16B.-16C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M.
(Ⅰ)若过点M的直线l与抛物线C有且只有一个交点,求直线l的方程;
(Ⅱ)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于简单随机抽样,有下列说法:
①它要求被抽取样本的总体的个数有限;
②它是从总体中逐个地进行抽取;
③它是一种不放回抽样;
④它是一种等可能抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.
其中正确的有①②③④(请把你认为正确的所有序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F是抛物线C:y2=2px(p>0)的焦点,⊙M过坐标原点和F点,且圆心M到抛物线C的准线距离为$\frac{3}{2}$
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知抛物线C上的点N(s,4),过N作抛物线C的两条互相垂直的弦NA和NB,判断直线AB是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=3cosx-sinx在点x0=$\frac{π}{3}$处的导数等于-$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

同步练习册答案