精英家教网 > 高中数学 > 题目详情
3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与抛物线y2=4x的准线分别交于A,B两点,O为坐标原点,若双曲线的离心率为2,则△AOB的面积为(  )
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

分析 求出双曲线的渐近线方程,抛物线的准线方程x=-1,解得交点A,B,运用离心率公式和a,b,c的关系,化简即可得到求得三角形的面积.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线方程为y=±$\frac{b}{a}$x,
抛物线y2=4x的准线为x=-1,
可得A(-1,$\frac{b}{a}$),B(-1,-$\frac{b}{a}$),
即有△AOB的面积为$\frac{1}{2}$•1•$\frac{2b}{a}$=$\frac{b}{a}$,
由e=$\frac{c}{a}$=2,即c=2a,
b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,
则△AOB的面积为$\frac{b}{a}$=$\sqrt{3}$.
故选:D.

点评 本题考查双曲线的方程和性质,主要是渐近线方程和离心率公式的运用,同时考查抛物线的准线方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一个焦点F作双曲线的一条渐近线的垂线,若垂线的延长线与y轴的交点坐标为$(0\;,\;\;\frac{c}{2})$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5是公比不等于1的等比数列.
(1)求数列{an}的通项公式.
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,设数列{bn}的前n项和Sn,求证:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=AC=2,AA1=4
(Ⅰ)过BC的截面交AA1于P点,若△PBC为等边三角形,求出点P的位置;
(Ⅱ)在(Ⅰ)条件下,求四棱锥P-BCC1B1与三棱柱ABC-A1B1C1的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上任意一点,且它到双曲线的两条渐近线的距离之积为定值3,则$\frac{1}{a^2}$+$\frac{1}{b^2}$=(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=2px(p>0)的焦点F,且倾斜角为$\frac{π}{4}$的直线与抛物线交于A,B两点,若AB的垂直平分线经过点(0,2),M为抛物线上的一个动点,则M到直线11:5x-4y+4=0和l2:x=-$\frac{2}{5}$的距离之和的最小值为(  )
A.$\frac{6\sqrt{41}}{41}$B.$\frac{6\sqrt{31}}{31}$C.$\frac{3\sqrt{41}}{41}$D.$\frac{3\sqrt{31}}{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线C:y2=4x,直线l交C于A,B两点,O为坐标原点,直线OA,OB的斜率分别为k1,k2,若k1•k2=-2,则△AOB面积的最小值为(  )
A.4B.3$\sqrt{2}$C.4$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.变量x,y满足条件$\left\{\begin{array}{l}{x-3y+4≤0}\\{3x+5y≤30}\\{x≥1}\\{\;}\end{array}\right.$,则z=2x+y的最小值为$\frac{11}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两个命题:
p:“若复数z1,z2满足z1-z2>0,则z1>z2.”;
q:“存在唯一的一个实数对(a,b)使得a-bi=i(2+i).”
其真假情况是(  )
A.p真q假B.p假q假C.p假q真D.p真q真

查看答案和解析>>

同步练习册答案