| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
分析 设双曲线的一个焦点F(c,0),一条渐近线方程为y=$\frac{b}{a}$x,运用两直线垂直的条件:斜率之积为-1,可得b=2a,再由离心率公式计算即可得到所求值.
解答
解:设双曲线的一个焦点F(c,0),一条渐近线方程为y=$\frac{b}{a}$x,
∵垂线的延长线与y轴的交点坐标为A$(0\;,\;\;\frac{c}{2})$,
∴由两直线垂直的条件:斜率之积为-1,可得$\frac{b}{a}$•$\frac{\frac{c}{2}-0}{-c}$=-1,
即b=2a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故选:D
点评 本题考查双曲线的离心率的求法,注意运用双曲线的焦点和渐近线方程、两直线垂直的条件以及离心率公式,考查运算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|2<x<3} | B. | {x|1<x<3} | C. | {x|1<x<2} | D. | {x|x>1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\sqrt{2},\sqrt{3}+1}]$ | B. | $[{\sqrt{3},2+\sqrt{3}}]$ | C. | $[{\sqrt{2},2+\sqrt{3}}]$ | D. | $[{\sqrt{3},\sqrt{3}+1}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com