精英家教网 > 高中数学 > 题目详情
5.如图,已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,且$α∈[{\frac{π}{12},\frac{π}{6}}]$,则该双曲线离心率e的取值范围为(  )
A.$[{\sqrt{2},\sqrt{3}+1}]$B.$[{\sqrt{3},2+\sqrt{3}}]$C.$[{\sqrt{2},2+\sqrt{3}}]$D.$[{\sqrt{3},\sqrt{3}+1}]$

分析 运用锐角三角函数的定义可得,|AF|=2csinα,|BF|=2ccosα,取左焦点F',连接AF',BF',可得四边形AFBF'为矩形,由双曲线的定义和矩形的性质,可得2c|cosα-sinα|=2a,由离心率公式和三角函数的辅助角公式,结合余弦函数的性质,即可得到所求范围.

解答 解:在Rt△ABF中,|OF|=c,
∴|AB|=2c,
在直角三角形ABF中,∠ABF=α,可得|AF|=2csinα,|BF|=2ccosα,
取左焦点F',连接AF',BF',可得四边形AFBF'为矩形,
∴||BF|-|AF||=|AF'|-|AF|=2c|cosα-sinα|=2a,
∴$e=\frac{c}{a}=\frac{1}{|cosα-sinα|}=\frac{1}{{\sqrt{2}|cos(α+\frac{π}{4})|}}$,
∵$\frac{π}{12}≤α≤\frac{π}{6},\;∴\frac{π}{3}≤α+\frac{π}{4}≤\frac{5π}{12}$,
∴$cos(α+\frac{π}{4})∈[\frac{{\sqrt{6}-\sqrt{2}}}{4},\frac{1}{2}],\;\sqrt{2}|cos(α+\frac{π}{4})|∈[\frac{{\sqrt{3}-1}}{2},\frac{{\sqrt{2}}}{2}]$,
∴$e∈[\sqrt{2},\sqrt{3}+1]$,
故选:A.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和锐角三角函数的定义,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为(  )
A.$\frac{\sqrt{3}}{5}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上一点,F1,F2分别是左右焦点,I是△PF1F2的内心,若△IPF1,△IPF2,△IF1F2的面积S1,S2,S3满足2(S1-S2)=S3,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.4D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一个焦点F作双曲线的一条渐近线的垂线,若垂线的延长线与y轴的交点坐标为$(0\;,\;\;\frac{c}{2})$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式$\frac{1+x}{1-x}$≥0的解集为(  )
A.{x|x≥1或≤-1}B.{x|-1≤x≤1}C.{x|x≥1或x<-1}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右支上第一象限内的一点,其右焦点为F2,若直线PF2的斜率为$\sqrt{3}$,M为线段PF2的中点,且|OF2|=|F2M|,则该双曲线的离心率为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在边长为1的等边△ABC中,P为直线BC上一点,若$\overrightarrow{AP}=(2-λ)\overrightarrow{AB}+2λ\overrightarrow{AC},λ∈R$,则λ=-1,$\overrightarrow{AP}•\overrightarrow{AC}$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5是公比不等于1的等比数列.
(1)求数列{an}的通项公式.
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,设数列{bn}的前n项和Sn,求证:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线C:y2=4x,直线l交C于A,B两点,O为坐标原点,直线OA,OB的斜率分别为k1,k2,若k1•k2=-2,则△AOB面积的最小值为(  )
A.4B.3$\sqrt{2}$C.4$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

同步练习册答案