精英家教网 > 高中数学 > 题目详情
20.不等式$\frac{1+x}{1-x}$≥0的解集为(  )
A.{x|x≥1或≤-1}B.{x|-1≤x≤1}C.{x|x≥1或x<-1}D.{x|-1≤x<1}

分析 不等式等价于$\frac{x+1}{x-1}$≤0,即(x+1)(x-1)≤0,且x-1≠0,由此求得不等式的解集.

解答 解:不等式等价于$\frac{x+1}{x-1}$≤0,即(x+1)(x-1)≤0,且x-1≠0,解得-1≤x<1,
故不等式的解集为{x|-1≤x<1},
故选:D.

点评 本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线互相垂直,那么此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|1<x<3},B={x|x>2},则A∩B=(  )
A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F1、F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,过点F1的直线与双曲线C的左、右两支分别交于P、Q两点,|F1P|、|F2P|、|F1Q|成等差数列,且∠F1PF2=120°,则双曲线C的离心率是(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$上有一点A,它关于原点的对称点为B,点F为双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,且$α∈[{\frac{π}{12},\frac{π}{6}}]$,则该双曲线离心率e的取值范围为(  )
A.$[{\sqrt{2},\sqrt{3}+1}]$B.$[{\sqrt{3},2+\sqrt{3}}]$C.$[{\sqrt{2},2+\sqrt{3}}]$D.$[{\sqrt{3},\sqrt{3}+1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线C的离心率为2,且△AOB的面积为$\sqrt{3}$,则△AOB的内切圆的半径为2$\sqrt{3}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直角三角形ABC中,A=90°,B=60°,B,C为双曲线E的两个焦点,点A在双曲线E上,则该双曲线的离心率为(  )
A.$\sqrt{3}+1$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线y2=2px(p>0),过点(4,0)作直线l交抛物线于A、B两点,且以AB为直径的圆过原点O.
(1)求抛物线的方程;
(2)过抛物线上的定点M(1,$\sqrt{2p}$)作两条关于直线x=1对称的直线,分别交抛物线于C,D两点,连接CD,试问:直线CD的斜率是否为定值?请说明理由.

查看答案和解析>>

同步练习册答案