分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.
解答
解:由z=2x+y,得y=-2x+z
作出不等式组对应的平面区域如图:
由图象可知当直线y=-2x+z过点A时,直线y=-2x+z的在y轴的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x=1}\\{x-3y+4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=\frac{5}{3}}\end{array}\right.$,即A(1,$\frac{5}{3}$),
此时z=2×1+$\frac{5}{3}$=$\frac{11}{3}$,
故答案为:$\frac{11}{3}$.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | $\sqrt{6}$ | C. | $\sqrt{3}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com