用数学归纳法证明1+2+3+…+n2=
,则当n=k+1时左端应在n=k的基础上加上( )
A.k2+1
B.(k+1)2
C.![]()
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
科目:高中数学 来源: 题型:
观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
A.f(x) B.-f(x) C.g(x) D.-g(x)
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P的位置无关的定值.试对双曲线
-
=1(a>0,b>0),写出具有类似的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N+)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )
A.(k+3)3 B.(k+2)3
C.(k+1)3 D.(k+1)3+(k+2)3
查看答案和解析>>
科目:高中数学 来源: 题型:
是否存在常数a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N+都成立,若存在,求出a、b、c并证明;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的参数方程为
(t为参数),曲线C2的极坐标方程为ρsinθ-ρcosθ=3,则C1与C2交点在直角坐标系中的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com