| A. | $\frac{5}{3}$ | B. | -$\frac{5}{3}$ | C. | 5 | D. | -5 |
分析 利用两个向量垂直等价于其的数量积等于0,解出λ值.
解答 解:∵$\overrightarrow m$=(1,-2),$\overrightarrow n$=(1,1),
∴$\overrightarrow{m}•\overrightarrow{n}$=1×1-2×1=-1,|$\overrightarrow m$|=$\sqrt{{1}^{2}+(-2)^{2}}$=$\sqrt{5}$
∵$\overrightarrow m$与$\overrightarrow m$+λ$\overrightarrow n$垂直,
∴$\overrightarrow m$•($\overrightarrow m$+λ$\overrightarrow n$)=|$\overrightarrow m$|2+λ$\overrightarrow{m}•\overrightarrow{n}$=5-λ=0,
解得λ=5,
故选:C.
点评 本题考查两个向量的数量积公式的应用,两个向量垂直的性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x≤1} | B. | {x|-1≤x<0} | C. | {x|0≤x≤2} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{12}$,$\frac{5π}{12}$] | B. | [-$\frac{7π}{12}$,-$\frac{1}{12}$π] | C. | [-$\frac{π}{12}$,$\frac{7π}{12}$] | D. | [-$\frac{7π}{12}$,$\frac{5π}{12}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com