精英家教网 > 高中数学 > 题目详情
14.执行下边的程序框图,则输出的n等于(  )
A.4B.5C.6D.7.

分析 模拟执行程序,依次写出每次循环得到的m,n的值,当m=5,n=4时满足条件m+n=9,退出循环,输出n的值为4,从而得解.

解答 解:模拟程序的运行,可得:
m=1,n=1
执行循环体,不满足条件m>n,m=3,n=2
不满足条件m+n=9,执行循环体,满足条件m>n,m=2,n=3
不满足条件m+n=9,执行循环体,不满足条件m>n,m=5,n=4
满足条件m+n=9,退出循环,输出n的值为4.
故选:A.

点评 本题主要考查了循环结构的程序框图的应用问题,分析出程序的功能是解答的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线C的离心率为$\frac{3+\sqrt{17}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若定义在R上的可导函数f(x)是奇函数,且对?x∈[0,+∞),f'(x)>0恒成立.如果实数t满足不等式f(lnt)-f(ln$\frac{1}{t}$)<2f(1),则t的取值范围是(0,e).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{2}$ax2-alnx+x.
(1)讨论函数f(x)的单调性;
(2)若a<0,设g(x)=f(x)-x,h(x)=-2xlnx+2x,若对任意x1,x2∈[1,+∞)(x1≠x2),|g(x2)-g(x1)|≥|h(x2)-h(x1)|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x2-2x≥0},B={x|y=log2(x2-1)},则(∁UA)∩B=(  )
A.[1,2)B.(1,2)C.(1,2]D.(-∞,-1)∪[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量$\overrightarrow m$=(cosA,cosB),$\overrightarrow n$=(a,2c-b),$\overrightarrow m$∥$\overrightarrow n$.
(I)求角A的大小;
(II)若a=2$\sqrt{5}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合P={x|log2x<-1},Q={x||x|<1},则P∩Q=(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({-1,\frac{1}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从1,2,3,4,5这5个数中一次性随机地取两个数,则所取两个数之和能被3整除的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“a≤-3”是“f(x)=-|x+a|在[3,+∞)上为减函数”的什么条件(  )
A.充分不必要B.必要不充分C.充要D.不充分不必要

查看答案和解析>>

同步练习册答案